课程信息
  • 课程首页
  • 拼团活动
  • 专业套餐
  • 优惠活动
  • 我的课程
  • 站内消息
  • 站内提醒
  • 我的钱包
  • 奖学金
  • 道具 | 抵价券
  • 登录


【快班】金融时间序列分析

数据分析

13周

1人

讲师
tracy1616
何翠仪:中山大学统计学专业毕业,炼数成金专职讲师,在过去曾讲授《大数据的统计学基础》课程,并负责多门炼数成金数据分析课程的助教工作,参与主持建设炼数成金的R语言认证题库系统(即将上线)。
课程简介

时间序列分析是重要的数据分析技术。当面对季节性、周期性变化数据时,传统的回归拟合技术难以奏效,此时就需要使用较为复杂的时间序列模型。对于电子商务销售量预测,股市行情预测等众多场景,时间序列是重要的分析利器,各种股市指标,平均线,都可以在时间序列里找到其统计学背景和依据。由于时间序列分析技术的复杂性,我们在基础课程里几乎没有涉及此项内容,现在开设本门课程的目的,就是以金融数据分析作为背景场景,用来剖析此项建模方法的细节和应用场景,由于金融场景对于大部分人来说都比其它场景案例更易于理解,因此 时间序列+金融数据分析 这两者结合,可谓双剑合璧,更容易达到举一反三的效果。即使本身并非从事金融领域或者将来并无兴趣从事量化投资工作的朋友,也可以在本课程里获益,达到熟练掌握时间序列分析手段的课程目标。


课程内容:
1 时间序列模型与分析技术详细剖析
2 基于R实现时间序列分析
3 金融基本概念与常见模型、指标
4 时间序列技术应用于金融数据分析

课程章节
  • 第1课 基本概念
    • 1-1 金融数据分析和量化投资基本概念
    • 1-2 时间序列、统计学的基本概念
  • 第2课 金融时间序列的基本性质
    • 2-1 均值、方差、自相关性、平稳性、随机性
  • 第3课 人生就像心电图有高有低
    • 3-1 平稳时间序列模型 AR、MA及ARMA模型简介
  • 第4课 房价具有上涨趋势,只涨不跌
    • 4-1 确定趋势建模
    • 4-2 通过传统回归方法估计非常数均值趋势模型的参数
  • 第5课 不同季节人们的消费习惯也不一样
    • 5-1 季节模型,针对具有一定循环或周期性的数据
  • 第6课 并非所有事情都会一帆风顺
    • 6-1 非平稳时间序列分析,通过差分平稳化构建的ARIMA模型
  • 第7课 实践是检验真理的唯一标准
    • 7-1 应用实例与模型比较
    • 7-2 通过实际的金融数据分析实例来熟悉各个模型
    • 7-3 比较各个模型的优劣
  • 第8课 资产收益波动率并非是一个常数
    • 8-1 条件异方差模型及应用
    • 8-2 讨论用来描述资产收益率的波动率随时间而改变的各种经济计量模型
  • 第9课 非线性是常态
    • 9-1 金融时间序列的非线性模型及其应用
    • 9-2 介绍非线性模型的检验与各种非线性时间序列的数学模型及其在金融中的应用
  • 第10课 进军多维世界
    • 10-1 多元时间序列分析
    • 10-2 介绍简单的多元模型和协整的相关知识
  • 第11课 大道至简
    • 11-1 多元时间序列分析的简化与降维,主成分分析与因子模型
  • 第12课 静止是相对的,运动是绝对的
    • 12-1 动态数据的状态空间模型和Kalman滤波的简介
  • 第13课 时间序列的最新发展
    • 13-1 马尔可夫链特卡罗方法
课程环境

windows

授课对象

这是一门数学+IT+业务(金融)的课程,适合已经学习本站《数据分析,展现与R语言》课程,或具备同样能力的朋友学习进修。

收获预期

熟练掌握时间序列分析技术,并能应用到具体业务场景中去,完成较复杂案例的分析工作

学费

学费: ¥400 ( 固定学费: ¥300, 逆向学费: ¥100 )

新颖的课程收费形式:“逆向收费”约等于免费学习,仅收取300元固定收费+100元逆向学费,学习圆满则逆向学费全额返还给学员!

炼数成金移动版 v2.0